Murphy Was an Optimist

Kevin R. Driscoll Kevin.Driscoll@Honeywell.com

Visegrád

Murphy's Law

• Murphy's Law says:

"If anything can go wrong, it will go wrong."

- Revised for Critical Embedded Systems:
 - "... and, if anything can't go wrong, it will go wrong anyway."

Requirements Are Beyond Our Experience

- A typical designer has much less than 5,000 hours of real hands-on experience
- So, when a designer says that the failure can't happen, this means that it hasn't been seen in the designer's lifetime of observation (i.e., under 5,000 hours)
- But 5,000 is an insignificant fraction of the 10,000,000 or 1,000,000,000 hours corresponding to typical high dependability requirements

We cannot rely on our experience-based intuition to determine whether a failure can happen within required probability limits

- Why not use the literature to gain virtual experience?
 - ... Because, papers about real occurrences of rare faults are difficult to find
 - Designers, maintainers, and users don't have "write papers" in their job descriptions
 - Organizations and people don't want to admit failures
 - The feeling that "once-in-a-lifetime" faults are not worth reporting
 - Most potential authors and some referees/reviewers have this feeling
 - Some referees/reviewers have "If I don't know about it, it doesn't exist" arrogance
 - Hard to find a popular venue and category for papers about single failures
 - Not enough material for a paper (1 to 2 pages), even for an "Experience" paper
 - Not really a "Quick Abstract"
 - Best fit maybe is a "Note" (but, where?)
 - Risks Forum (Digest): web page, email list, comp.risks newsgroup
 - Not a peer-reviewed publication (some posts are published in journal columns)
 - Most contributions are hearsay and don't have enough detail to be useful to designers

→ Where should such "papers" be published and made known to designers?

Complexity Division Boundaries

- To manage increasing complexity, we:
 - Abstract
 - Divide the problem into layers of less/more detail
 - Failures can happen in layers that designers don't see
 - Specialize
 - > Divide the problem into slices (silos) of different technology disciplines
 - Failures can hide in the "cracks" between disciplines
- Phenomena crossing a sufficient number of boundaries is indistinguishable from magic*

* Apologies to Arthur C. Clark and his 3rd law of prediction

Transmogrification* Examples

- A diode became a capacitor, causing all four NASA space shuttle processors to disagree amongst themselves (Byzantine problem) during the countdown for mission STS-124
- An integrated circuit input become an output, causing panic at the most important secure switchboard in country
- Conversion of "stuck at" failures to oscillatory failures
 - RS-485 (driver \rightarrow oscillator), escaped intended fault containment zone
 - MIL STD 1553 (amplifier \rightarrow oscillator \rightarrow phase-lock-loop)
- Example of "partogenesis"
 - Partogenesis = creation of a component that didn't exist before
 - Capacitor added to an integrated circuit
 - * Transmogrification definition: the act of changing into a different form or appearance (especially a fantastic or grotesque one), often as if by magic

Some Other Byzantine Failures

Previously reported in 2003 Safecomp and 2004 DASC

- Another space shuttle example
 - Different triggering cause (wrong bus termination resistor)
 - Slightly different symptom (2:2 disagreement)
- Multi-Microprocessor Flight Control System (M²FCS)
- Potential grounding of an entire aircraft fleet of 150+ airplanes
- Heavy ion fault injection in an early version of TTP/C silicon

Two other Byzantine failures

- Mid-value select (MVS)
 - Shows asynchronous, inexact voting is not immune
- Command/Monitor (COM/MON)
 - Lesson learned:

It may be impossible to create a COM / MON (or any wrap-back fault detection mechanism) which can observe all failures that might escape!

Some "Out of Band" Fault Propagations

- Reset propagated through ground
- Self-inflicted shrapnel
 - Jet engines (A-380, Sioux City DC-10, ...)
 - Exploding capacitor
- All ICs in an avionics box died, iff the plane flew a greater than 3-G climbing right-turn with side slip and was above 10,000 feet

Some Software Examples

- Software "evaporated" from memory only at a certain temperature range
- Bad software caused CPU to lock up (even reset wouldn't work)
- Exhaustively tested software started causing a problem when some other software was changed
- Miscompare between identical copies of software running on identical hardware
- Software didn't operate correctly even though the source code and compiler were bug free.

Arthur C. Clark's 1st law of prediction: "When a distinguished but elderly scientist states that something is possible, he is almost certainly right. When he states that something is impossible, he is very probably wrong."

→ Any statement of "that can't happen" should be given a great deal of skepticism.

If you have any stories about rare failure modes, please e-mail them to me: Kevin.Driscoll@Honeywell.com I will be posting some stories on a web site for NASA. Similarly, we are collecting questions that should be asked when reviewing a system designed high dependability.