Kevin R. Driscoll

Kevin.Driscoll@Honeywell.com

Visegrad

* Murphy’s Law says:
“If anything can go wrong, it will go wrong.”

 Revised for Critical Embedded Systems:
“...and, if anything can’t go wrong, it will go wrong anyway.”

* A typical designer has much less than 5,000 hours of real hands-on experience
* So, when a designer says that the failure can’t happen, this means that it hasn’t
been seen in the designer’s lifetime of observation (i.e., under 5,000 hours)
e But 5,000 is an insignificant fraction of the 10,000,000 or 1,000,000,000 hours
corresponding to typical high dependability requirements
=>» We cannot rely on our experience-based intuition to determine
whether a failure can happen within required probability limits

* Why not use the literature to gain virtual experience?

.. Because, papers about real occurrences of rare faults are difficult to find
— Designers, maintainers, and users don’t have “write papers” in their job descriptions
— Organizations and people don’t want to admit failures
— The feeling that “once-in-a-lifetime” faults are not worth reporting

» Most potential authors and some referees/reviewers have this feeling
— Some referees/reviewers have “If | don’t know about it, it doesn’t exist” arrogance
— Hard to find a popular venue and category for papers about single failures
Not enough material for a paper (1 to 2 pages), even for an “Experience” paper
Not really a “Quick Abstract”
Best fit maybe is a “Note” (but, where?)
Risks Forum (Digest): web page, email list, comp.risks newsgroup

/

** Not a peer-reviewed publication (some posts are published in journal columns)

/

“* Most contributions are hearsay and don’t have enough detail to be useful to desigmers
=>» Where should such “papers” be published and made known to designers?

YV VYV

Abstraction
Layers

* To manage increasing complexity, we:

— Abstract Specialized Silos
» Divide the problem into layers of less/more detail
» Failures can happen in layers that designers don’t see

— Specialize
» Divide the problem into slices (silos) of different technology disciplines
» Failures can hide in the “cracks” between disciplines

* Phenomena crossing a sufficient number
of boundaries is indistinguishable from magic*

* Apologies to Arthur C. Clark and his 3™ law of prediction

* A diode became a capacitor, causing all four NASA space shuttle
processors to disagree amongst themselves (Byzantine problem)
during the countdown for mission STS-124

* An integrated circuit input become an output, causing panic at
the most important secure switchboard in country
* Conversion of “stuck at” failures to oscillatory failures

— RS-485 (driver = oscillator), escaped intended fault containment zone
— MIL STD 1553 (amplifier = oscillator = phase-lock-loop)

* Example of “partogenesis”

— Partogenesis = creation of a component that didn’t exist before
— Capacitor added to an integrated circuit

* Transmogrification definition: the act of changing into a different form or appearance
(especially a fantastic or grotesque one), often as if by magic

* Previously reported in 2003 Safecomp and 2004 DASC

— Another space shuttle example
» Different triggering cause (wrong bus termination resistor)
» Slightly different symptom (2:2 disagreement)

— Multi-Microprocessor Flight Control System (M?FCS)
— Potential grounding of an entire aircraft fleet of 150+ airplanes
— Heavy ion fault injection in an early version of TTP/C silicon

* Two other Byzantine failures
— Mid-value select (MVS)

» Shows asynchronous, inexact voting is not immune

— Command/Monitor (COM/MON)
» Lesson learned:
It may be impossible to create a COM / MON (or any wrap-back fault
detection mechanism) which can observe all failures that might escape!

* Reset propagated through ground

* Self-inflicted shrapnel
— Jet engines (A-380, Sioux City DC-10, ...)
— Exploding capacitor
* All ICs in an avionics box died, iff the plane flew a

greater than 3-G climbing right-turn with side slip and
was above 10,000 feet

 Software “evaporated” from memory only at a
certain temperature range

* Bad software caused CPU to lock up (even reset
wouldn’t work)

* Exhaustively tested software started causing a
problem when some other software was changed

* Miscompare between identical copies of software
running on identical hardware

 Software didn’t operate correctly even though the
source code and compiler were bug free.

Arthur C. Clark's 15t law of prediction:
“When a distinguished but elderly
scientist states that something is
possible, he is almost certainly right.
When he states that something is
impossible, he is very probably wrong.”

= Any statement of “that can’t happen”
should be given a great deal of skepticism.

If you have any stories about rare failure modes, please e-mail
them to me: Kevin.Driscoll@Honeywell.com

| will be posting some stories on a web site for NASA.

Similarly, we are collecting questions that should be asked when
reviewing a system designed high dependability.

